Episode 61: ECPR with Scott Weingart

Critical Care Scenarios - A podcast by Critical Care Scenarios - Wednesdays

Categories:

We chat with Scott Weingart of Emcrit about the use of crash VA ECMO for the cardiac arrest patient. Check out the REANIMATE course here! Listen to the ED ECMO podcast on ECPR here Find us on Patreon here! Buy your merch here! Takeaway lessons * ECPR candidacy may account for age, comorbidities, and code duration. Physiologic age is probably more important than chronological age. No-flow time without CPR should be very brief (witnessed is best), but low-flow time (with CPR) can actually be very long and still have good outcomes with ECPR. New systems should probably have stricter inclusion criteria, as numerous poor outcomes can endanger a fledgling program. * The cause of arrest is usually not as important, partly because it’s often not known so early. ECPR can be a bridge to diagnosis and prognosis. * One team should run the ACLS arrest while another handles the ECMO cannulation; it’s not possible to effectively do both. The cannulator should have their own ultrasound machine, and can function alone, although at least one skilled assistant is helpful. Mechanical CPR devices help by reducing energy in the room and reducing movement of the lower body; if not present, assign someone to manually stabilize the pelvis. * Cannulation can be done by various services as long as they’re immediately available. Whoever it is should be comfortable using ultrasound. Cutdowns are probably not the preferred technique except in niche cases. A second service like CT surgery can arrive after a short delay to do the dilation and cannula placement if the in-department provider like EM or CCM can get initial access with smaller devices. * Get ready by setting up equipment, position the ultrasound, and get sterile. As the patient arrives, have someone strip the clothes, expose the femoral region, and prep it, then get started with venous and arterial access. * Vein vs artery cannot be distinguished without ultrasound, and can be difficult even with it. Don’t use anatomic location – use appearance. Arteries are thicker walled and small in cardiac arrest. TEE with a bicaval view to see your wire can be a huge help. * The femoral artery should be accessed between the ligament and the bifurcation. Too high means RP bleeding risk; too low means potential for vessel damage. Similar for the venous access, although it’s more forgiving. * Initially, place wires and then some kind of sheath, dilator, or line that will accept a larger, stiffer wire (Scott uses the Amplatz Superstiff). Going directly from needle to stiff wire is challenging and higher risk for vessel damage. This also means if you end up not proceeding to ECMO, you can just use the smaller sheaths for venous and arterial access. * Even when a pulse returns, it’s often safer to proceed to ECMO in good candidates with a long arrest time. Supporting them through the next few days when they’re high risk of re-arrest, reperfusion injury, and other complications is likely to be safer than letting their heart do the work. * Dilation for ECMO is similar to other dilation, just less forgiving. Follow the same consistent angle as the needlestick, constantly rack your wire, and consider dilating to a somewhat smaller cannula than in other VA ECMO situations, which is often tolerated post-arrest.