#129 Bayesian Deep Learning & AI for Science with Vincent Fortuin
Learning Bayesian Statistics - A podcast by Alexandre Andorra - Wednesdays

Categories:
Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)Takeaways:The hype around AI in science often fails to deliver practical results.Bayesian deep learning combines the strengths of deep learning and Bayesian statistics.Fine-tuning LLMs with Bayesian methods improves prediction calibration.There is no single dominant library for Bayesian deep learning yet.Real-world applications of Bayesian deep learning exist in various fields.Prior knowledge is crucial for the effectiveness of Bayesian deep learning.Data efficiency in AI can be enhanced by incorporating prior knowledge.Generative AI and Bayesian deep learning can inform each other.The complexity of a problem influences the choice between Bayesian and traditional deep learning.Meta-learning enhances the efficiency of Bayesian models.PAC-Bayesian theory merges Bayesian and frequentist ideas.Laplace inference offers a cost-effective approximation.Subspace inference can optimize parameter efficiency.Bayesian deep learning is crucial for reliable predictions.Effective communication of uncertainty is essential.Realistic benchmarks are needed for Bayesian methodsCollaboration and communication in the AI community are vital.Chapters:00:00 Introduction to Bayesian Deep Learning04:24 Vincent Fortuin’s Journey to Bayesian Deep Learning11:52 Understanding Bayesian Deep Learning16:29 Current Landscape of Bayesian Libraries21:11 Real-World Applications of Bayesian Deep Learning23:33 When to Use Bayesian Deep Learning28:22 Data Efficiency in AI and Generative Modeling30:18 Integrating Bayesian Knowledge into Generative Models31:44 The Role of Meta-Learning in Bayesian Deep Learning34:06 Understanding Pack Bayesian Theory37:55 Algorithms for Bayesian Deep Learning Models