Kinetische Theorie
Modellansatz - A podcast by Gudrun Thäter, Sebastian Ritterbusch
Categories:
Seit September 2017 ist Martin Frank am KIT tätig. Er ist einerseits ein Direktor des Steinbuch Centre for Computing (SCC) und leitet dort die Arbeitsgruppe für Computational Science and Mathematical Methods. Andererseits gehört er als Professor der KIT-Fakultät für Mathematik an, hält also mathematische Lehrveranstaltungen und führt junge Leute zur Promotion. In diesen beiden Rollen drückt sich schon die Interdisziplinarität seiner Arbeit aus. Er hat schon langjährige Erfahrung in dieser Doppelrolle gesammelt durch ähnliche Aufgaben an der RWTH Aachen. Gudrun wollte sich mit unserem neuen Kollegen über sein hauptsächliches Forschungsthema, die kinetische Theorie unterhalten. Diese Denkweise wurde zur Modellierung von Gasen entwickelt und ist inspiriert von physikalischen Vorstellungen, die kinetische Energie als inhärente Eigenschaft von Materie ansieht. Die kinetische Gastheorie schaut auf die mikroskopische Ebene, um schließlich makroskopische Größen wie Wärme und Temperatur besser zu erklären. Im sogenannten idealen Gas bewegen sich unfassbar viele kleine Massepunkte entsprechend der Newtonschen Mechanik frei, ungeordnet und zufällig im Raum, stoßen dabei ab und zu zusammen und wir empfinden und messen den Grad der Bewegungsaktivität der Teilchen als Wärme. Die Einheit, die man dieser Größe zunächst zuwies war Kalorie von lat. Calor=Wärme. Heute ist die richtige SI-Einheit für Energie (und damit auch Wärme) das Joule. Die messbare Größe Temperatur ist damit vereinfacht ausgedrückt die mechanische Engergie im Gassystem und das Modell liefert eine kinetische Theorie der Wärme. Man kann es aber auch als Vielteilchensystem von mikroskopischen Teilchen ansehen aus denen sich in klar definierten (unterschiedlichen) Grenzwertprozessen makroskopische Größen und deren Verhalten ableiten lassen. Die Untersuchung dieser Grenzwerte ist eine mathematisch sehr anspruchsvolle Aufgabe und bis heute ein offenes Forschungsfeld, in dem nur Stück für Stück spezielle Fragen beantwortet werden. Eine Schwierigkeit ist dabei nämlich, dass automatisch immer sehr unterschiedliche Skalen nebeneinander existieren und in ihrer Interaktion richtig gefaßt und verstanden werden müssen. Außerdem ist in der Regel jeder Grenzwert, für den sich interessante Forschungsergebnisse ergeben, innerhalb der Theorie eine Singularität. Schon Hilbert hatte 1900 die axiomatische Fassung der Physik zwischen Mechanik und Wahrscheinlichkeitsrechnung als eines der wichtigen mathematischen Probleme für das 20. Jahrhundert dargestellt. Wir sind seitdem vorangekommen, aber es bleibt noch sehr viel zu tun. Zum Beispiel ist die mögliche Korreliertheit zwischen den Teilchenbewegungen für Gase eine offene Frage (außer für kurze Zeiten). Ein Vorteil gegenüber der Zeit Hilberts ist heute, dass wir inzwischen auch den Computer benutzen können, um Modelle zu entwickeln und zu analysieren. Dafür muss man natürlich geeignete numerische Methoden entwickeln. In der Arbeit von Martin Frank sind es in der Regel Integro-Differentialgleichungen mit hyperbolischer partieller Differentialgleichung für die Modellierung von Bewegungen ohne Dämpfung. Diese haben schon durch die Formulierung viele Dimensionen, nämlich jeweils 3 Orts- und 3 Geschwindigkeitskomponenten an jedem Ort des Rechengebietes. Deshalb sind diese Simulationen nur auf großen Parallelrechnern umsetzbar und nutzen High Performance Computing (HPC). Hieraus erklärt sich auch die Doppelrolle von Martin Frank in der Verantwortung für die Weiterentwicklung der HPC-Gruppe am Rechenzentrum des KIT und der Anwendung von Mathematik auf Probleme, die sich nur mit Hilfe von HPC behandeln lassen. Sehr interessant ist in dieser Theorie die gegenseitige Beeinflussung von Numerik und Analysis in der Behandlung kleiner Parameter. Außerdem gibt es Anknüpfungspunkte zur Lattice Boltzmann Research Group die am KIT das Software-Paket OpenLB entwickeln und anwenden. (...)