Newton-Verfahren
Modellansatz - A podcast by Gudrun Thäter, Sebastian Ritterbusch
Categories:
Mathematik mit Kunst und Design erklären - das war ein Ziel des Cooking Math-Projekts. Robert Winkler forscht an der Fakultät für Mathematik zu numerischen Verfahren für schlecht gestellte Probleme. Das hilft z.B. Elektrische Impedanztomographie genauer und schneller zu machen. Seine Teilnahme am Cooking Math Projektes hat uns zum jetzigen Zeitpunkt zusammengeführt. Die Aufgabenstellung der Elektrischen Impedanztomographie ist es, aus Messungen auf der Oberfläche eines Körpers Rückschlüsse auf die Zusammensetzung im Inneren zu ziehen. Dazu dient bei der Elektrische Impedanztomographie die elektrische Leitfähigkeit im Innern, die Auswirkungen auf gemessene elektrische Potentiale an der Körperoberfläche hat. Aus physikalischen Zusammenhängen (hier Ohmsches Gesetz und Kirchhoffsche Regeln) lassen sich partielle Differentialgleichungen herleiten, die aus der Leitung im Innern die Oberflächenpotentiale berechenbar machen. Das nennt man Vorwärtsproblem. In der Praxis braucht man aber genau die andere Richtung - das sogenannte inverse Problem - denn man hat die Werte auf dem Rand gemessen und will unter den gleichen physikalischen Annahmen auf den Ablauf im Inneren schließen. Der Zusammenhang, der so modellhaft zwischen Leitfähigkeit und Potential am Rand entsteht, ist hochgradig nichtlinear. Außerdem ist er instabil, das heißt kleine Messfehler können dramatische Auswirkungen auf die Bestimmung der Leitfähigkeit haben. Daher müssen bei der numerischen Bearbeitung Verfahren gefunden werden, die die partielle Differentialgleichung numerisch lösen und dabei diese Nichtlinearität stabil behandeln können. Etabliert und sehr effektiv ist dabei das Newtonverfahren. Es ist weithin bekannt zur Nullstellensuche bei Funktionen von einer Variablen. Die grundlegende Idee ist, dass man ausgehend von einem Punkt in der Nähe der Nullstelle den Tangenten an der Funktion folgt um sich schrittweise der Nullstelle zu nähern. Durch die Information, die in der Tangentenrichtung verschlüsselt ist, entsteht so ein Verfahren zweiter Ordnung, was in der Praxis heißt, dass sich nach kurzer Zeit in jedem Schritt die Zahl der gültigen Stellen verdoppelt. Großer Nachteil ist, dass das nur dann funktioniert, wenn man nahe genug an der Nullstelle startet (dh. in der Regel braucht man zuerst ein Verfahren, das schon eine gute erste Schätzung für die Nullstelle liefert). Außerdem gibt es Probleme, wenn die Nullstelle nicht einfach ist. Wenn man das Newtonverfahren zum finden von Optimalstellen nutzt (dort wo die Ableitung eine Nullstelle hat), kann es natürlich nur lokale Minima/Maxima finden und auch nur dasjenige, das am nächsten vom Startwert liegt. Im Kontext der inversen Probleme wird das Newtonverfahren auch eingesetzt. Hier muss natürlich vorher eine geeignete Verallgemeinerung gefunden werden, die so wie die Ableitungen im eindimensionalen Fall eine Linearisierung der Funktion in einer (kleinen) Umgebung des Punktes sind. (...)