Optimale Akkuladung

Modellansatz - A podcast by Gudrun Thäter, Sebastian Ritterbusch

Categories:

Gudrun sprach mit Veronika Auinger, die in ihrer Masterarbeit Ladevorgänge für Akkumulatoren (Akkus) optimal regelt. Die Arbeit entstand in enger Zusammenarbeit mit Christian Fleck und Andrea Flexeder von der Firma BOSCH (Abt. Control Theory). In einer Zeit, in der klar wird, das Erdöl als Energielieferant sehr bald ersetzt werden muss, ist die Suche nach alternativen Antriebsarten im Transport von hoher Priorität. Die populärste ist das Elektrofahrzeug, auch wenn es noch immer darum kämpft, sich in den Köpfen der Menschen zu etablieren. Ein wesentlicher Grund dafür ist die sehr begrenzte Speicherkapazität und die lange Ladezeit der in diesen Fahrzeugen eingebauten Akkumulatoren (*). Wir sind von Verbrennungsmotoren an eine große Reichweite und große Flexibilität gewöhnt. Wenn Elektroautos dieselben Anforderungen erfüllen sollen wie Benzinautos, spielen die Akkus und deren Laderegime(s) eine zentrale Rolle. Automobilzulieferer wie BOSCH oder MAHLE entwickeln schon jetzt einen beträchtlichen Teil der Technologie und Software, die in modernen Fahrzeugen steckt. Nun kommt die Entwicklung von zukunftsträchtigen Akkus als neues Thema und Produkt hinzu. Das Ziel der Masterarbeit von Frau Auinger war es, eine intelligente Ladestrategie zu finden, die zwei Aspekte des Batteriesystems minimiert: die Zeit, die benötigt wird, um die Batterie vollständig aufzuladen, und den Kapazitätsverlust des Akkus, der durch die Ladung verursacht wird. Eine gleichzeitige Minimierung ist jedoch problematisch, da beide Ziele im Allgemeinen nicht gemeinsam erreicht werden können: Eine minimale Ladezeit führt in der Regel zu einem hohen Kapazitätsverlust und umgekehrt. Der Grund hierfür ist, dass zur Verkürzung der Ladezeit mit höheren Strömen aufgeladen werden muss, was wiederum zu einer kürzeren Lebensdauer der Akkus führt. So gewinnen intelligente Ladestrategien an Bedeutung, bei denen der Ladestrom einem vorgegebenen Profil folgt, der den Verlust der Lebensdauer minimiert und die Ladezeit akzeptabel kurz hält. Diese Protokolle lassen sich als Lösungen für optimale Steuerungsprobleme bestimmen. In der Praxis erfordert dies Algorithmen, die Lösungen in Echtzeit liefern, was das Ziel dieser Masterarbeit war. Zu Beginn dieses Projektes lag eine Formulierung des Steuerungsproblem von Carolin Eckhard vor, das von ihr durch eine einfache Implementierung in Matlab gelöst worden war. Das Modell der Lithium-Ionen-Batterie besteht darin aus drei Teilen: Ein Zellspannungsmodell, ein Zelltemperaturmodell und ein Alterungsmodell, das den Kapazitätsverlust in der Zelle beschreibt. Da der Code nicht für Echtzeitzwecke taugte, wurde er von Adrian Tardieu beschleunigt, indem er Gradientenprojektionsmethoden einsetzte. In der Arbeit von Frau Auinger wurde ein vereinfachtes optimales Ladeproblem hergeleitet für das eine analytische Lösung mit Hilfe von Pontrjagin's Satz berechnet werden kann. Diese dient als erste Trajektorie im iterativen Algorithmus, was das Verfahren in der Regel (...)

Visit the podcast's native language site