Why 80% of A/B tests fail, how to 10X your experimentation velocity - Kristi Angel - The Data Scientist Show #088

The Data Scientist Show - A podcast by Daliana Liu

Categories:

Most experimentations fail, Kristi Angel shares her expertise on scaling experimentation and avoiding common A/B testing pitfalls. Learn five things that can help boost test velocity, designing impactful experiments, and leveraging knowledge repos. (Chapters below) Kristi Angel’s LinkedIn: ⁠https://www.linkedin.com/in/kristiangel/ Subscribe to Daliana's newsletter on ⁠www.dalianaliu.com⁠ for more on data science and career. Daliana's Twitter: ⁠https://twitter.com/DalianaLiu⁠ Daliana’s LinkedIn: ⁠https://www.linkedin.com/in/dalianaliu/⁠ (00:00:00) Intro (00:01:26) Why do most experimentations fail? (00:07:05) Mistakes in choosing metrics (00:10:05) Is revenue a good metric? (00:13:18) Split metrics in three ways (00:15:10) Daliana's story with too many category breakdowns (00:16:59) What makes the best data science team? (00:19:24) Data scientist work in silo vs in a data science team (00:21:15) Building a knowledge center (00:23:40) Example of knowledge center; nuance of experimentations (00:26:09) How many metrics and variants? (00:30:56) How to reduce noise - CUPED (00:33:01) Future of A/B testing (00:38:33) Q&A: Low statistical power