EA - Dan Luu: Futurist prediction methods and accuracy by Linch
The Nonlinear Library: EA Forum - A podcast by The Nonlinear Fund
Categories:
Link to original articleWelcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Dan Luu: Futurist prediction methods and accuracy, published by Linch on September 15, 2022 on The Effective Altruism Forum. tl;dr: Dan Luu has a detailed post where he tracks in detail past predictions and argues that contra Karnofsky, Arb, etc, the track record of futurists is overall quite bad. Relevantly to this audience, he further argues that this is evidence against the validity of current longtermist efforts in long-range predictions. (I have not finished reading the post). I've been reading a lot of predictions from people who are looking to understand what problems humanity will face 10-50 years out (and sometimes longer) in order to work in areas that will be instrumental for the future and wondering how accurate these predictions of the future are. The timeframe of predictions that are so far out means that only a tiny fraction of people making those kinds of predictions today have a track record so, if we want to evaluate which predictions are plausible, we need to look at something other than track record. The idea behind the approach of this post was to look at predictions from an independently chosen set of predictors (Wikipedia's list of well-known futurists1) whose predictions are old enough to evaluate in order to understand which prediction techniques worked and which ones didn't work, allowing us to then (mostly in a future post) evaluate the plausibility of predictions that use similar methodologies. Unfortunately, every single predictor from the independently chosen set had a poor record and, on spot checking some predictions from other futurists, it appears that futurists often have a fairly poor track record of predictions so, in order to contrast techniques that worked with techniques that I didn't, I sourced predictors that have a decent track record from my memory, an non-independent source which introduces quite a few potential biases. Something that gives me more confidence than I'd otherwise have is that I avoided reading independent evaluations of prediction methodologies until after I did the evaluations for this post and wrote 98% of the post and, on reading other people's evaluations, I found that I generally agreed with Tetlock's "Superforecasting" on what worked and what didn't work despite using a wildly different data set. In particular, people who were into "big ideas" who use a few big hammers on every prediction combined with a cocktail party idea level of understanding of the particular subject to explain why a prediction about the subject would fall to the big hammer generally fared poorly, whether or not their favored big ideas were correct. Some examples of "big ideas" would be "environmental doomsday is coming and hyperconservation will pervade everything", "economic growth will create near-infinite wealth (soon)", "Moore's law is supremely important", "quantum mechanics is supremely important", etc. Another common trait of poor predictors is lack of anything resembling serious evaluation of past predictive errors, making improving their intuition or methods impossible (unless they do so in secret). Instead, poor predictors often pick a few predictions that were accurate or at least vaguely sounded similar to an accurate prediction and use those to sell their next generation of predictions to others. By contrast, people who had (relatively) accurate predictions had a deep understanding of the problem and also tended to have a record of learning lessons from past predictive errors. Due to the differences in the data sets between this post and Tetlock's work, the details are quite different here. The predictors that I found to be relatively accurate had deep domain knowledge and, implicitly, had access to a huge amount of information that they filtered effectively in order to make good predictions. Tetlock was studying peo...
