NSK Super-TF Strengthens Main Bearings
The Uptime Wind Energy Podcast - A podcast by Allen Hall, Rosemary Barnes, Joel Saxum & Phil Totaro

Categories:
Loren Walton from NSK discusses the challenges of main shaft bearing failures in wind turbines and NSK's Super-TF bearing technology as a durable solution. He also covers the limitations of previous diamond-like carbon coatings and how NSK's advanced heat-treated steel can improve turbine longevity. Fill out our Uptime listener survey and enter to win an Uptime mug! Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Allen Hall: With modern wind turbines growing larger and main shaft bearings failing prematurely. The industry needs innovative solutions rather than relying on yesterday's technology. This week we speak with Loren Walton, manager of corporate accounts at NSK. NSK has developed super tough bearing technology, a special heat treated steel that creates a significantly harder surface without coatings delivering long lifespans and eliminating catastrophic failures in today's larger wind turbines. Welcome to Uptime Spotlight, shining Light on Wind. Energy's brightest innovators. This is the progress powering tomorrow. Allen Hall: Loren, welcome to the show. Thanks for having me. Appreciate your time today. Loren, we brought you in the program because you're an expert in bearings. You're with NSK, A lot of knowledge, a lot of history there. First, I want to ask a real simple question because we've run into operators all across the United States and the world. Generally speaking, we just got back from Australia who are having problems with main shaft bearings. And maybe the first thing to do here is to describe what some of the problems are that operators are facing with the traditional main shaft bearings. Yeah. So Loren Walton: traditionally what we were saying was a whole lot of, I guess I'll say combined loading, right? So it's a, radio load that is, up and down and some axial thrust that's coming in from the wind shear, right? So combining the weight of the main shaft, which is you're taking up from that radio load with that wind shear. So then you end up having some combined loading where. The downed wind row is seeing a little bit more of load share than the upwind row. That's getting through the lubricant regime, which is then creating some micro welding and shearing, any amount of metal, any steel. When it's created, it's going to have some disparities. I use my fingers as the disparities, right? So your roller, your raceway, or your raceway,