Wind Turbine Cooling System Improvements

The Uptime Wind Energy Podcast - A podcast by Allen Hall, Rosemary Barnes, Joel Saxum & Phil Totaro

Categories:

This week we discuss cooling system patents, including Siemens Gamesa's method for creating air channels for better temperature control, Goldwind's predictive temperature moderating, and GE's adjustable power output based on component temperatures. Fill out our Uptime listener survey and enter to win an Uptime mug! Register for Wind Energy O&M Australia! https://www.windaustralia.com Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! This is Power Up, where groundbreaking wind energy ideas become your clean energy future. Here's your hosts, Allen Hall and Phil Totaro. Allen Hall: Phil, this episode of Power Up is going to focus on cooling. And as wind turbines get bigger and bigger, thermal controls are becoming more important. You need to make sure that there's no thermal runaways, and with the amount of power. 8, 10, 12, 15 megawatts going on inside of some of these nacelles. You're seeing a lot of patents and innovation around cooling, and this first one is from Siemens Gamesa, and it has to do with the generator itself. And the patent describes a cooling system for the generator that places air channels to better control temperature. Within the generator. Now, the key feature includes the magnet elements arranged in rows with groove like recesses that allow for targeted airflow between the components. Now, that design creates multiple cooling paths with gaps somewhere between like a half a millimeter and ten millimeters wide that enable better heat dissipation. So, obviously Siemens Gamesa sees the future, which is thermal control in a generator, because if you have overheating in generators That can be quite expensive to fix, so they're trying to address it up front, Phil, with this basically airflow pattern. Phil Totaro: Yeah, and, and as you mentioned, not only are generators getting bigger but particularly for offshore, the operational efficiency matters a lot. and how you control both the flux density and efficiency of the generator, balanced against how you have to cool the thing to maintain the kind of an air gap that you need in order to get the efficiency you want. It, it just throws these thermal engineers into complete chaos most of the time. So the way that they're architecting this is so that you can control the airflow in those channels in between the, the magnet holders to prevent hotspots. For the long term, if it keeps happening and you keep getting the hotspot, it can actually cause thermal degradation in th...