MLOps.community

A podcast by Demetrios

Categories:

426 Episodes

  1. MLSecOps is Fundamental to Robust AISPM // Sean Morgan // #257

    Published: 8/30/2024
  2. MLOps for GenAI Applications // Harcharan Kabbay // #256

    Published: 8/27/2024
  3. BigQuery Feature Store // Nicolas Mauti // #255

    Published: 8/23/2024
  4. Design and Development Principles for LLMOps // Andy McMahon // #254

    Published: 8/20/2024
  5. Data Quality = Quality AI // AIQCON Panel

    Published: 8/16/2024
  6. The Variational Book // Yuri Plotkin // #253

    Published: 8/13/2024
  7. Vision and Strategies for Attracting & Driving AI Talents in High Growth // Panel // AIQCON

    Published: 8/9/2024
  8. Red Teaming LLMs // Ron Heichman // #252

    Published: 8/6/2024
  9. Balancing Speed and Safety // Panel // AIQCON

    Published: 8/2/2024
  10. Reliable LLM Products, Fueled by Feedback // Chinar Movsisyan // #251

    Published: 7/30/2024
  11. A Blueprint for Scalable & Reliable Enterprise AI/ML Systems // Panel // AIQCON

    Published: 7/26/2024
  12. AI Operations Without Fundamental Engineering Discipline // Nikhil Suresh // #250

    Published: 7/23/2024
  13. AI in Healthcare // Eric Landry // #249

    Published: 7/19/2024
  14. Evaluating the Effectiveness of Large Language Models: Challenges and Insights // Aniket Singh // #248

    Published: 7/16/2024
  15. Extending AI: From Industry to Innovation // Sophia Rowland & David Weik // #247

    Published: 7/12/2024
  16. Detecting Harmful Content at Scale // Matar Haller // #246

    Published: 7/9/2024
  17. All Data Scientists Should Learn Software Engineering Principles // Catherine Nelson // #245

    Published: 7/5/2024
  18. Meta GenAI Infra Blog Review // Special MLOps Podcast

    Published: 7/3/2024
  19. AI Agents for Consumers // Shaun Wei // #244

    Published: 6/28/2024
  20. ML and AI as Distinct Control Systems in Heavy Industrial Settings // Richard Howes // #243

    Published: 6/25/2024

4 / 22

Weekly talks and fireside chats about everything that has to do with the new space emerging around DevOps for Machine Learning aka MLOps aka Machine Learning Operations.